Abstract
We study motivic zeta functions for Q-divisors in a Q-Gorenstein variety. By using a toric partial resolution of singularities we reduce this study to the local case of two normal crossing divisors where the ambient space is an abelian quotient singularity. For the latter we provide a closed formula which is worked out directly on the quotient singular variety. As a first application we provide a family of surface singularities where the use of weighted blow-ups reduces the set of candidate poles drastically. We also present an example of a quotient singularity under the action of a nonabelian group, from which we compute some invariants of motivic nature after constructing a Q-resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.