Abstract
<abstract><p>We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.