Abstract

Chronic widespread pain (CWP) is one of the most difficult pain conditions to treat due to an unknown etiology and a lack of innovative treatment design and effectiveness. Based upon preliminary findings within the fields of motivational psychology, integrative neuroscience, diaphragmatic breathing, and vagal nerve stimulation, we propose a new treatment intervention, motivational non-directive (ND) resonance breathing, as a means of reducing pain and suffering in patients with CWP. Motivational ND resonance breathing provides patients with a noninvasive means of potentially modulating five psychophysiological mechanisms imperative for endogenously treating pain and increasing overall quality of life.

Highlights

  • AND BACKGROUNDChronic widespread pain (CWP), including fibromyalgia syndrome (FMS), is a particular type of chronic primary pain where biological causalities may or may not be present and can not be identified as either musculoskeletal or neuropathic pain (Treede et al, 2015)

  • Based upon preliminary findings within the fields of motivational psychology, integrative neuroscience, diaphragmatic breathing, and vagal nerve stimulation, we propose a new treatment intervention, motivational non-directive (ND) resonance breathing, as a means of reducing pain and suffering in patients with CWP

  • We propose that the autonomic and cardiovascular mediators that link respiration and CWP are baroreceptor sensitivity (BRS) and heart rate variability (HRV); the physiological mechanism needed to reduce pain in those with CWP is diaphragmatic breathing (DB) (i.e., resonance frequency (RF) breathing); the central mechanism responsible for producing respiratory hypoalgesia is vagus nerve stimulation; and the cognitive and affective psychological mechanisms needed to reduce pain in those with CWP is ND attention and motivation

Read more

Summary

AND BACKGROUND

Chronic widespread pain (CWP), including fibromyalgia syndrome (FMS), is a particular type of chronic primary pain where biological causalities may or may not be present and can not be identified as either musculoskeletal or neuropathic pain (Treede et al, 2015). Pioneering research within the field of respiratory hypoalgesia has shown that DB performed with a high respiratory volume and low frequency could activate the anti-nociceptive effects of BRS (Dworkin et al, 1979; Dworkin et al, 1994) and concomitant increases in hfHRV (Triedman and Saul, 1994; Bruehl and Chung, 2004) This is in line with current evidence which does not support a direct causal association between DB and pain reduction, but instead, strongly suggests that a more indirect mediation through autonomic and cardiovascular changes is plausible (Jafari et al, 2017). Sham MNRB does not promote endogenous mastery of the treatment and remains on the screen for each treatment session

CONCLUSION
Findings
AUTHOR CONTRIBUTIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.