Abstract

The pathway through which behavior change techniques have an effect on the behavior of an individual is referred to as the Mechanism of Action (MoA). Digitally enabled behavior change interventions could potentially benefit from explicitly modelling the MoA to achieve more effective, adaptive, and personalized interventions. For example, if ‘motivation’ is proposed as the targeted construct in any behavior change intervention, how can a model of this construct be used to act as a mechanism of action, mediating the intervention effect using various behavior change techniques? This article discusses a computational model for motivation based on the neural reward pathway with the aim to make it act as a mediator between behavior change techniques and target behavior. This model’s formal description and parametrization are described from a neurocomputational sciences prospect and elaborated with the help of a sub-question, i.e., what parameters/processes of the model are crucial for the generation and maintenance of motivation. An intervention scenario is simulated to show how an explicit model of ‘motivation’ and its parameters can be used to achieve personalization and adaptivity. A computational representation of motivation as a mechanism of action may also further advance the design, evaluation, and effectiveness of personalized and adaptive digital behavior change interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.