Abstract

Various kinetic studies on nucleotide incorporation by DNA polymerases have established that a rate-limiting step occurs that is crucial in the mechanism of discrimination between correct versus incorrect nucleotide. Crystallographic studies have indicated that this step may be due to a large open-to-closed conformational transition affecting the fingers subdomain. However, there is no direct evidence to support this hypothesis. In order to investigate whether or not the open-to-closed conformational transition affecting the fingers subdomain is rate limiting, we have developed a fluorescence resonance energy transfer (FRET) system, which monitors motions of the fingers subdomain. We establish that the closing of the fingers subdomain is significantly faster than the kinetically determined rate-limiting step. We propose that the rate-limiting step occurs after the closing of the fingers subdomain and is caused by local reorganization events in the active site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call