Abstract

In this paper, we investigate the flow of curve and its equiform geometry in 4-dimensional Galilean space. We obtain that the Frenet equations and curvatures of inextensible flows of curves and its equiformly invariant vector fields and intrinsic quantities are independent of time. We find that the motions of curves and its equiform geometry can be defined by the inviscid and stochastic Burgers’ equations in 4-dimensional Galilean space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.