Abstract

The static envelope of a Gabor patch with a moving sinusoidal carrier appears shifted in the direction of the carrier motion (De Valois & De Valois, 1991). This phenomenon is called motion-induced position shift. Although several motion-processing stages, ranging from low- to high-level processes, may contribute to position estimation, it is unknown whether a binocular matching stage or an even earlier stage exerts an influence. To elucidate this matter, we investigated the disparity tuning of this illusion by manipulating the binocular disparities of the carrier and the envelope. If the mechanisms underlying the illusion have disparity selectivity, the illusory shift should disappear when the carrier and envelope have sufficiently different disparities. We conducted an experiment in which a sinusoidal grating inside a Gaussian envelope had a crossed or uncrossed disparity and the background was filled with static random noise; each subject correctly judged whether the grating was in front of or behind the fixation plane. Position shift occurred even when the moving carrier had a vastly different disparity from that of the envelope, suggesting that one of the mechanisms responsible for the phenomenon exists at a monocular visual stage. To confirm this, in the next experiment we examined whether depth perception can be produced by an illusory disparity due to illusory position shifts in opposite directions between eyes. Two Gabor-like patches moving in opposite directions were presented at the same retinal position dichoptically. We found that when each monocular patch had a soft edge in its contrast envelope, the depth perception of such a patch was biased toward the depth consistent with the illusory crossed or uncrossed disparity, whereas depth perception of a stimulus with a hard edge was less biased. We suggest that the underlying mechanisms of motion-induced position shift are present at an early stage of monocular visual processing, and that the altered positions are represented in the left-eye and right-eye monocular pathways in a way that allows them to function as tokens of binocular matching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.