Abstract
Traditional one-time authentication mechanisms cannot authenticate smartphone users’ identities throughout the session — the concept of using behavioral-based biometrics captured by the built-in motion sensors and touch data is a candidate to solve this issue. Many studies proposed solutions for behavioral-based continuous authentication; however, they are still far from practicality and generality for real-world usage. To date, no commercially deployed implicit user authentication scheme exists because most of those solutions were designed to improve detection accuracy without addressing real-world deployment requirements. To bridge this gap, we tackle the limitations of existing schemes and reach towards developing a more practical implicit authentication scheme, dubbed MotionID, based on a one-class detector using behavioral data from motion sensors when users touch their smartphones. Compared with previous studies, our work addresses the following challenges: ① Global mobile average to dynamically adjust the sampling rate for sensors on any device and mitigate the impact of using sensors’ fixed sampling rate; ② Over-all-apps to authenticate a user across all the mobile applications, not only on-specific application; ③ Single-device-evaluation to measure the performance with multiple users’ (i.e., genuine users and imposters) data collected from the same device; ④ Rapid authentication to quickly identify users’ identities using a few samples collected within short durations of touching (1–5 s) the device; ⑤ Unconditional settings to collect sensor data from real-world smartphone usage rather than a laboratory study. To show the feasibility of MotionID for those challenges, we evaluated the performance of MotionID with ten users’ motion sensor data on five different smartphones under various settings. Our results show the impracticality of using a fixed sampling rate across devices that most previous studies have adopted. MotionID is able to authenticate users with an F1-score up to 98.5% for some devices under practical requirements and an F1-score up to roughly 90% when considering the drift concept and rapid authentication settings. Finally, we investigate time efficiency, power consumption, and memory usage considerations to examine the practicality of MotionID.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.