Abstract

From our daily experience, it is very clear that relative motion cues can contribute to correctly identifying object boundaries and perceiving depth. Motion-defined contours are not only generated by the motion of objects in a scene but also by the movement of an observer's head and body (motion parallax). However, the neural mechanism involved in detecting these contours is still unknown. To explore this mechanism, we extracellularly recorded visual responses of area 18 neurons in anesthetized and paralyzed cats. The goal of this study was to determine if motion-defined contours could be detected by neurons that have been previously shown to detect luminance-, texture-, and contrast-defined contours cue invariantly. Motion-defined contour stimuli were generated by modulating the velocity of high spatial frequency sinusoidal luminance gratings (carrier gratings) by a moving squarewave envelope. The carrier gratings were outside the luminance passband of a neuron, such that presence of the carrier alone within the receptive field did not elicit a response. Most neurons that responded to contrast-defined contours also responded to motion-defined contours. The orientation and direction selectivity of these neurons for motion-defined contours was similar to that of luminance gratings. A given neuron also exhibited similar selectivity for the spatial frequency of the carrier gratings of contrast- and motion-defined contours. These results suggest that different second-order contours are detected in a form-cue invariant manner, through a common neural mechanism in area 18.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.