Abstract
This paper evaluates simple but general links between the operating dynamic motional phases and the non-linear energy dissipation characteristics of granular dampers. The Discrete Element Method is used to simulate a typical granular medium consisting of spherical particles in a cylindrical enclosure subjected to harmonic vibrations aligned both parallel and perpendicular with gravity. A set of equivalent experiments is conducted to verify the numerical model. A wide range of excitation frequency and amplitude are considered, to obtain many different motional phases, along with particle size and volume fill ratio. Granular motional phase maps are produced over amplitude-frequency plane that defines where the various motion phases are present providing rich information for the effectiveness of granular dampers. Findings show that high granular damping effectiveness is found in two distinct zones: where collective collisions with the enclosure are optimised and where fluidisation without convection is maximised. The most significant factors affecting these high effectiveness zones are identified and can be used to provide guidance for those seeking to design granular dampers to reduce vibrations in structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.