Abstract

The reduction in spectral splitting, or motional narrowing, of the deuterium spectra of D2O/phospholipid mixtures near the main chain melting phase transition was studied for palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE) and equimolar mixtures of the two at 10% hydration. For POPC the splitting was about 1700 Hz in both the fluid and gel phases, dropping to zero near the phase transition (as reported previously). For POPE the splitting remained approximately constant above the phase transition. Below the phase transition the spectrum showed a single broad line whose linewidth varied between 100 Hz and 800 Hz. This was interpreted as being due to small domains of water within a weakly hydrated crystal. POPC:POPE (1:1) samples exhibited motional narrowing behaviour similar to that for POPC except that the splitting above the phase transition was approximately twice that below the transition. The relatively broad temperature range (approximately 20 K) of the transition is explained using a simple physical model involving lipid fluctuations near the phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.