Abstract
Spin-orbit coupling in the electronic states of solution-processed hybrid metal halide perovskites forms complex spin-textures in the band structures and allows for optical manipulation of the excited state spin-polarizations. Here, we report that motional narrowing acts on the photoexcited spin-polarization in CH3NH3PbBr3 thin films, which are doped at percentage-level with Mn2+ ions. Using ultrafast circularly polarized broadband transient absorption spectroscopy at cryogenic temperatures, we investigate the spin population dynamics in these doped hybrid perovskites and find that spin relaxation lifetimes are increased by a factor of 3 compared to those of undoped materials. Using quantitative analysis of the photoexcitation cooling processes, we reveal increased carrier scattering rates in the doped perovskites as the fundamental mechanism driving spin-polarization-maintaining motional narrowing. Our work reports transition-metal doping as a concept to extend spin lifetimes of hybrid perovskites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.