Abstract

In a cold atomic ensemble the weak Raman scattering of an incident laser beam writes a spin-wave grating by transferring an atom between ground-level hyperfine states. These spin-waves serve as a basis for a quantum memory. For clock states, where magnetic dephasing is suppressed, thermal motion of the atoms across the spin-wave is the principal source of dephasing on the sub-millisecond timescale, limiting the quantum memory time achievable. An investigation of the role of the optical lattice in reducing motional dephasing is presented, using Monte Carlo simulations to study the influence of ensemble temperature, trap depth and differential ac Stark shifts in the case of rubidium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.