Abstract
Motion video recognition has been well explored in applications of computer vision. In this paper, we propose a novel video representation, which enhances motion recognition in videos based on SURF (Speeded-Up Robust Features) and two filters. Firstly, the detector scheme of SURF is used to detect the candidate points of the video because it is an efficient faster local feature detector. Secondly, by using the optical flow field and trajectory, the feature points can be filtered from the candidate points, which enables a robust and efficient extraction of motion feature points. Additionally, we introduce a descriptor, called MoSURF (Motion Speeded-Up Robust Features), based on SURF (Speeded-Up Robust Features), HOG (Histogram of Oriented Gradient), HOF (Histograms of Optical Flow), MBH(Motion Boundary Histograms), and trajectory information, which can effectively describe motion information and are complementary to each other. We evaluate our video representation under action classification on three motion video datasets namely KTH, YouTube, and UCF50. Compared with state-of-the-art methods, the proposed method shows advanced results on all datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.