Abstract

Knowledge on loads acting on a structure is important for analysis and design. There are many applications in which it is difficult to measure directly the dynamic loads acting on a component. In such situations, it may be possible to estimate the imposed loads through a measurement of the system output response. Load identification through output response measurement is an inverse problem that is not only ill‐conditioned but, in general, leads to multiple solutions. Therefore, additional information such as the number and locations of the imposed loads must be provided ahead of time in order to allow for a unique solution. This paper focuses on cases where such information is not readily available and uses the concept of motion transmissibility for the identification of loads applied to a structure. The identification of loads through measurement of structural response at a finite number of optimally selected sensor locations is investigated. Optimum sensor locations are identified using the D‐optimal design algorithm to provide the most precise load estimates based on acceleration measurements using accelerometers. Simulation results for multi‐degree‐of‐freedom (MDOF) discrete and continuous systems are presented to illustrate the proposed technique. It is seen that the proposed approach is effective in determining not only the number of applied loads as well as their locations but also the magnitude of applied loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.