Abstract

Motion sickness (MS) has been found to increase body-core cooling during immersion in 28 degrees C water, an effect ascribed to attenuation of the cold-induced peripheral vasoconstriction (Mekjavic et al. in J Physiol 535(2):619-623, 2001). The present study tested the hypothesis that a more profound cold stimulus would override the MS effect on peripheral vasoconstriction and hence on the core cooling rate. Eleven healthy subjects underwent two separate head-out immersions in 15 degrees C water. In the control trial (CN), subjects were immersed after baseline measurements. In the MS-trial, subjects were rendered motion sick prior to immersion, by using a rotating chair in combination with a regimen of standardized head movements. During immersion in the MS-trial, subjects were exposed to an optokinetic stimulus (rotating drum). At 5-min intervals subjects rated their temperature perception, thermal comfort and MS discomfort. During immersion mean skin temperature, rectal temperature, the difference in temperature between the non-immersed right forearm and 3rd finger of the right hand (DeltaTff), oxygen uptake and heart rate were recorded. In the MS-trial, rectal temperature decreased substantially faster (33%, P < 0.01). Also, the DeltaTff response, an index of peripheral vasomotor tone, as well as the oxygen uptake, indicative of the shivering response, were significantly attenuated (P < 0.01 and P < 0.001, respectively) by MS. Thus, MS may predispose individuals to hypothermia by enhancing heat loss and attenuating heat production. This might have significant implications for survival in maritime accidents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.