Abstract
Parkinson's disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the unified PD rating scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees, and linear regression, using ten-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair, and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.