Abstract

To explore whether MR fingerprinting (MRF) scans provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure (POE). Prospective. 13 infants with POE (3 male; 12 newborns (age 7-65 days) and 1 infant aged 9-months). 3T, 3D T1-weighted MPRAGE, 3D T2-weighted TSE and MRF sequences. The image quality of MRF and MRI was assessed in a fully crossed, multiple-reader, multiple-case study. Sixteen image quality features in three types-image artifacts, structure and myelination visualization-were ranked by four neuroradiologists (8, 7, 5, and 8 years of experience respectively), using a 3-point scale. MRF T1 and T2 values in 8 white matter brain regions were compared between babies younger than 1 month and babies between 1 and 2 months. Generalized estimating equations model to test the significance of differences of regional T1 and T2 values of babies under 1 month and those older. MRI and MRF image quality was assessed using Gwet's second order auto-correlation coefficient (AC2) with confidence levels. The Cochran-Mantel-Haenszel test was used to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. A P value <0.05 was considered statistically significant. The MRF of two infants were excluded in T1 and T2 value analysis due to severe motion artifact but were included in the image quality assessment. In infants under 1 month of age (N = 6), the T1 and T2 values were significantly higher compared to those between 1 and 2 months of age (N = 4). MRF images showed significantly higher image quality ratings in all three feature types compared to MRI images. MR Fingerprinting scans have potential to be a motion-robust and efficient method for nonsedated infants. 2 TECHNICAL EFFICACY STAGE: 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.