Abstract

Capturing an uncontrolled space target is a tremendously challenging research topic. Target capture by a space robot can be well planned according to predicted motion of the target. In this paper, motion prediction of an uncontrolled space target is studied and a motion prediction algorithm is proposed. In the proposed algorithm, firstly a method for identifying the parameters of motion state and inertial property of the target is established; and then through substituting the identified parameters into the dynamic equations of the target, the motion of the target can be predicted as the solution of the equations. In the identification of the parameters, the unscented Kalman filter (UKF) is applied. In order to support the UKF, a method for estimating noise level of the observation data is developed, so our motion prediction algorithm is noise adaptive. A practical convergent criterion is also designed to determine the time when the estimated result of the UKF is accurate enough, such that the predicted motion is credible enough. After that, the accuracy of the prediction is further improved by an optimization method. In the end of this paper, numerical simulations are done to verify the validity of the proposed motion prediction algorithm. Simulation results indicate that the proposed algorithm is able to predict the motion of the target precisely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.