Abstract

Unmanned-aerial-vehicle (UAV)-aided data collection for Internet of Things applications has attracted increasing attention. This paper investigates motion planning for UAV collecting low-power ground sensor node (SN) data in a dynamic jamming environment. We targeted minimizing the flight energy consumption via optimization of the UAV trajectory while considering the indispensable constraints which cover the collection data demodulation threshold, obstacle avoidance, data collection volume, and motion principle. Firstly, we formulate the UAV-aided data collection problem as an energy consumption minimization problem. To solve this nonconvex optimization problem, we rewrite the original problem by introducing relaxation variables and constructing equivalence constraints to obtain a new relaxation convex problem, which can be solved iteratively using the successive convex approximation (SCA) method. However, SCA is susceptible to initial values, especially in dynamic environments where fixed initial values may lead to a wide range of results, making it difficult to obtain a truly optimal solution to the optimization problem. To solve the initial value problem in dynamic environments, we further propose a communication-flight-corridor(CFC)-based initial path generation method to improve the reliability and convergence speed of the SCA method by constructing reliable communication regions and resilient secure paths in real time. Finally, simulation results validate the performance of the proposed algorithm compared to the benchmark algorithms under different parameter configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call