Abstract

In this paper, a layered goal-oriented motion planning strategy using fuzzy logic is developed for a mobile robot navigating in an unknown environment. Information about the global goal and long-range sensory data are used by the first layer of the planner to produce an intermediate goal, referred to as the way-point that gives an optimal direction in terms of seeking the goal within the detected area. The second layer of the planner takes this way-point as a sub-goal and, using short-range sensory data, guides the robot to reach the sub-goal while avoiding collisions. In this approach, there is no assumption about the environment Due to its simplicity and capability for real-time implementation, fuzzy logic has been used for the proposed motion planning strategy. The resulting navigation system is implemented on a real mobile robot, Koala, and tested in various environments. Experimental results are presented which demonstrate the effectiveness of the proposed fuzzy navigation system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.