Abstract

AbstractModular integrated construction (MiC) is the most advanced construction method that involves off‐site manufacturing, factory‐to‐site transportation, and on‐site assembly of free‐standing integrated modules. Despite the growing interest in the manufacturability of MiC, little research is available on the passing ability issues where efficient and safe transportation of modules is critical to the project's success. This paper proposes (1) a novel computational method for formulating and solving the module's horizontal passing ability with road constraints as a motion planning problem and (2) a new index to assess the path performance in critical scenarios. The newly developed Truck‐Parallelized Hybrid A Star (TP‐Hybrid A*) has novelties in collision checking, cost function formulation, and parallel computing on different vehicle dimensions. The effectiveness of the developed algorithm was experimentally verified to be superior to the rapid random tree in computation time and path performance and further demonstrated by applying it to a real‐life MiC project. The new index can serve as a useful tool for decision‐making in module dimension design and transportation planning of MiC projects when tackling the module's horizontal passing ability issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.