Abstract

Nonlinear control-affine systems described by ordinary differential equations with time-varying vector fields are considered in the paper. We propose a unified control design scheme with oscillating inputs for solving the trajectory tracking and stabilization problems under the bracket-generating condition. This methodology is based on the approximation of a gradient-like dynamics by trajectories of the designed closed-loop system. As an intermediate outcome, we characterize the asymptotic behavior of solutions of the considered class of nonlinear control systems with oscillating inputs under rather general assumptions on the generating potential function. These results are applied to examples of nonholonomic trajectory tracking and obstacle avoidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.