Abstract

SUMMARYThis paper first presents a method of motion planning and implementation for the self-recovery of an overturned six-legged robot. Previous studies aimed at the static and dynamic stabilization of robots for preventing them from overturning. However, no one can guarantee that an overturn accident will not occur during various applications of robots. Therefore, the problems involving overturning should be considered and solved during robot design and control. The design inspirations of multi-legged robots come from nature, especially insects and mammals. In addition, the self-recovery approach of an insect could also be imitated by robots. In this paper, such a self-recovery mechanism is reported. The inertial forces of the dangling legs are used to bias some legs to touch the ground, and the ground reaction forces exerted on the feet of landing legs are achieved to support and push the body to enable recovery without additional help. By employing the mechanism, a self-recovery approach named SSR (Sidewise-Self-Recovery) is presented and applied to multi-legged robots. Experiments of NOROS are performed to validate the effectiveness of the self-recovery motions. The results show that the SSR is a suitable method for multi-legged robots and that the hemisphere shell of robots can help them to perform self-recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.