Abstract

Abstract The motion of spiral waves in excitable media driven by a weak pacing around the spiral tip is investigated numerically as well as theoretically. We presented a Bifurcations diagram containing four types of the spiral motion induced by different frequencies of pacing: rigidly rotating, inward-petal meandering, resonant drift, and outward-petal meandering spiral. Simulation shows that the spiral resonantly drifts when the frequency of pacing is close to that of the spiral rotation. We also find that the speed and direction of the drift can be efficiently controlled by means of the strength and phase of the local pacing, which is consistent with analytical results based on the framework of the weak deformation approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.