Abstract

Interior surfaces of capillaries are lined with macromolecules forming an endothelial surface layer (ESL). A theoretical model is used to investigate effects of flow velocity on motion and axisymmetric deformation of red blood cells in a capillary with an ESL. Cell deformation is analyzed, including effects of membrane shear and bending elasticity. Plasma flow around the cell and through the ESL is computed using lubrication theory. The ESL is represented as a porous layer that exerts compressive forces on red blood cells that penetrate it. According to the model, hydrodynamic pressures generated by plasma flow around the cell squeeze moving red blood cells into narrow elongated shapes. If the ESL is 0.7 microm wide, with hydraulic resistivity of 2 x 10(8) dyn x s x cm(-4), and exerts a force of 20 dyn/cm2, predicted variation with flow velocity of the gap width between red blood cell and capillary wall agrees well with observations. Predicted gap at a velocity of 0.1 mm/s is approximately 0.6 microm vs. approximately 0.2 microm with no ESL. Predicted flow resistance increases markedly at low velocities. The model shows that exclusion of red blood cells from the ESL in flowing capillaries can result from hydrodynamic forces generated by plasma flow through the ESL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.