Abstract

We experimentally evaluated the impulsive motion of free-surface of water on impingement of shock-waves of moderate strength. This physical process creates the initial acceleration in shock-wave based micro-fluidic devices, which have promising medical and drug/DNA delivery applications. The velocities of the water interfaces were measured through real-time high-temporal/spatial resolution visualizations. Based on modified Tait equation-of-state and the concept of Reimann-invariants, an analytical expression was deduced to calculate the particle velocity behind the unloading wave. The experiments and analyses confirm that the mass motion behind the shock-wave accelerates to very high velocities, a requirement for effective momentum delivery in micro-jet devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.