Abstract

Microdroplets driven by the Marangoni effect are known to continue to swim for hours despite their simple composition. This swimming microdroplet changes its motion from straight to curvilinear and further to chaotic as the Péclet number increases. In this study, we investigate the effect of external perturbations on the three-dimensional axis-asymmetric model of a droplet driven by the Marangoni effect. The aim here is to elucidate the contribution of external perturbation to the complex motion of the droplet and the change in its effect according to the droplet size. In this paper, first we provide a detailed explanation on the derivation of the model introduced in our previous work, which is next used to describe the motion of the droplet in the numerical study of the angular response to random perturbations. The numerical simulation of droplet motion with different types of noise indicates that the model does not converge them into a certain type of motion but rather helps to reflect the external perturbations. The obtained results suggest that the types and properties of external perturbation have a considerable effect on the droplet motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call