Abstract
This paper presents an analytical study of creeping motion of a permeable sphere in a spherical container filled with a micro-polar fluid. The drag experienced by the permeable sphere when it passes through the center of the spherical container is studied. Stream function solutions for the flow fields are obtained in terms of modified Bessel functions and Gegenbauer functions. The pressure fields, the micro-rotation components, the drag experienced by a permeable sphere, the wall correction factor, and the flow rate through the permeable surface are obtained for the frictionless impermeable spherical container and the zero shear stress at the impermeable spherical container. Variations of the drag force and the wall correction factor with respect to different fluid parameters are studied. It is observed that the drag force, the wall correction factor, and the flow rate are greater for the frictionless impermeable spherical container than the zero shear stress at the impermeable spherical container. Several cases of interest are deduced from the present analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.