Abstract
The continuum robot is widely used in minimally invasive surgery (MIS) because of its flexibility, dexterity and safety. However, because of the friction in the transmission system, backlash, and shape error from nominal kinematics, the tracking accuracy of the continuum robot is low, which may damage the tissues and organs during surgery. A novel error compensation method is presented to improve control. Considering the nonlinear friction and coupling effects, the static model of a robot is derived based on the principle of virtual work. A modified Capstan equation including bending rigidity and nonlinear friction is established to analyze the transmission characteristics of a cable-pulley system. The results of the experiments conducted with a continuum robot indicate the validity of the proposed compensation method. The established model and the proposed compensation method can be used for the cable-driven continuum robot to guarantee safety and stability in MIS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The international journal of medical robotics + computer assisted surgery : MRCAS
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.