Abstract
Inspired by the self-migration of microorganisms in nature, artificial micro- and nanomotors can mimic this fantastic behavior by converting chemical fuel or external energy into mechanical motion. These self-propelled micro- and nanomotors, designed either by top-down or bottom-up approaches, are able to achieve different applications, such as environmental remediation, sensing, cargo/sperm transportation, drug delivery, and even precision micro-/nanosurgery. For these various applications, especially biomedical applications, regulating on-demand the motion of micro- and nanomotors is quite essential. However, it remains a continuing challenge to increase the controllability over motors themselves. Here, we will discuss the recent advancements regarding the motion manipulation of micro- and nanomotors by different approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.