Abstract

Existing errors in the structure and kinematic parameters of multi-legged walking robots, the motion trajectory of robot will diverge from the ideal sports requirements in movement. Since the existing error compensation is usually used for control compensation of manipulator arm, the error compensation of multi-legged robots has seldom been explored. In order to reduce the kinematic error of robots, a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot. The locus error of a robot body is measured, when robot moves along a given track. Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body. Error value is used to compensate driven joint variables and modify control model of robot, which can drive the robots following control model modified. The model of the relation between robot’s locus errors and kinematic variables errors is set up to achieve the kinematic error compensation. On the basis of the inverse kinematics of a multi-legged walking robot, the relation between error of the motion trajectory and driven joint variables of robots is discussed. Moreover, the equation set is obtained, which expresses relation among error of driven joint variables, structure parameters and error of robot’s locus. Take MiniQuad as an example, when the robot MiniQuad moves following beeline tread, motion error compensation is studied. The actual locus errors of the robot body are measured before and after compensation in the test. According to the test, variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time. The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.