Abstract

This paper addresses the problem of position control of robotic manipulators in the task space. A computationally simple class of task space regulators consisting of a transpose Jacobian controller plus an integral term including a function of task space position error, is proposed. These regulators require very little information regarding the robot dynamic equations or the payload and ensure (based on the Lyapunov stability theory) that the task space position error is asymptotically convergent. The performance of the proposed control strategy is illustrated through computer simulation for a direct-drive arm of a SCARA type manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.