Abstract

Multimodal motion capability is an emerging topic in the robotics field, and this paper presents a hybrid robot system maneuvering in both terrestrial and aerial environments. Firstly, a micro quadruped–quadrotor robot with onboard sensing and computing is developed. This robot incorporates both the high mobility of unmanned aerial vehicles and the long endurance of mobile robots on the ground. A coordinated motion control scheme is then exploited for adaptive terrestrial–aerial motion transition. In this scheme, a bio-inspired terrestrial locomotion controller is proposed to generate various quadruped locomotions, and a model-based aerial locomotion controller is proposed to generate various quadrotor configurations. Then, an unified motion controller for the two subsystems which dynamically adjusts crawling and flying motion in a complicated environment is presented. Consequently, several practical trials are conducted to demonstrate the adaptability and the robustness of the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call