Abstract

(1) To investigate the effect of internal localized movement on 3DMR intracranial vessel wall imaging and (2) to develop a novel motion-compensation approach combining volumetric navigator (vNav) and self-gating (SG) to simultaneously compensate for bulk and localized movements. A 3D variable-flip-angle turbo spin-echo (ie, SPACE) sequence was modified to incorporate vNav and SG modules. The SG signals from the center k-space line are acquired at the beginning of each TR to detect localized motion-affected TRs. The vNavs from low-resolution 3D EPI are acquired to identify bulk head motion. Fifteen healthy subjects and 3 stroke patients were recruited in this study. Overall image quality (0-poor to 4-excellent) and vessel wall sharpness were compared among the scenarios with and without bulk and/or localized motion and/or the proposed compensation strategies. Localized motion reduced wall sharpness, which was significantly mitigated by SG (ie, outer boundary of basilar artery: 0.68 ± 0.27 vs 0.86 ± 0.17; P = .037). When motion occurred, the overall image quality and vessel wall sharpness obtained with vNav-SG SPACE were significantly higher than those obtained with conventional SPACE (ie, basilarartery outer boundary sharpness: 0.73 ± 0.24 vs 0.94 ± 0.24; P = .033), yet comparable to those obtained in motion-free scans (ie, basilarartery outer boundary sharpness: 0.94 ± 0.24 vs 0.96 ± 0.31; P = .815). Localized movements can induce considerable artifacts in intracranial vessel wall imaging. The vNav-SG approach is capable of compensating for both bulk and localized motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.