Abstract

Piezoelectric energy harvesters (PEH) for cardiac pacemakers typically use animal models to assess the performance of the PEH. However, if considering multiple designs, the use of animal models and prototyping increases costs and time. To reduce the use of animal models in research for pacemaker energy harvesting applications, this study investigates the motion of a pacemaker lead wire (PLW) in vivo using fluoroscopy imaging to quantify the position and displacements as a function of time, such that the data can be used in computer simulations. The proposed technique uses fluoroscopy imaging video data of a dual chamber pacemaker implanted in a patient, and image processing allows for the motion of the PLW captured. The motion is discretized into nodes for ease of implementation in finite element software. FEA simulation is presented using a piezoelectric energy harvester design integrated in the lead wire, and the energy output is predicted by finite element computer simulation. A 2-dimensional analysis is conducted with the fluoroscopy imaging video data to characterize the PLW motion and results show close agreement with literature values. Simulations with an energy harvesting circuit using the nodal position and displacement data shows that a PEH integrated in the PLW can generate a direct current voltage of 1.12V and power output of 0.125μW, potentially extending the battery life of pacemakers by 0.75-1years. The results suggest that fluoroscopy imaging data can be effective in evaluating PEH designs rather than using animal models, saving time and costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call