Abstract
Capturing the motion of two hands interacting with an object is a very challenging task due to the large number of degrees of freedom, self-occlusions, and similarity between the fingers, even in the case of multiple cameras observing the scene. In this paper we propose to use discriminatively learned salient points on the fingers and to estimate the finger-salient point associations simultaneously with the estimation of the hand pose. We introduce a differentiable objective function that also takes edges, optical flow and collisions into account. Our qualitative and quantitative evaluations show that the proposed approach achieves very accurate results for several challenging sequences containing hands and objects in action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.