Abstract
In recent work, a particular high-gain feedback law was shown to drive a pursuer-evader system arbitrarily close to a state of motion camouflage in finite time. However, data collected from bat-insect encounters, in which a strategy akin to motion camouflage is used by the bat to pursue the insect, reveal that a modest feedback gain is used, and significant sensorimotor delay is present. Therefore, we revisit our earlier analysis (in CDC 2006), but with sensorimotor delay incorporated into the model. We derive constraints among parameters such as feedback gain, sensorimotor delay, and relative speed, for which it is possible to guarantee performance of the feedback law in achieving motion camouflage. Besides helping us to better understand pursuit in nature, such pursuit laws have applications in missile guidance and unmanned vehicle control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.