Abstract

Stable stepping motion from mechanical excitation of a piezoelectric device is generated using the impact drive mechanism (IDM) based on various triangular waveforms exerted by the counter mass speed. However, stick-slip behavior originating from the contact friction between the movable part and the guide surface poses an obstacle for precise modeling. Therefore, this work presents a concise impulse model for mechanism control of stepping motion behavior. The proposed impulse model incorporates the duty ratio and input frequency of the triangular waveform of counter mass relative displacement as the system input and outputs the estimated step size and the behavior of the stepping motion. An enhanced version of the dynamic model and our experimental results validate the efficacy of the proposed model. An adequate design and control of IDM motion is highly promising for use in nano-scale positioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.