Abstract

Although the automation level is high within the automotive industry, there are still a large number of manual tasks, especially is the final assembly of the vehicle. Overhead assembly operations is an example of a problematic manual task that can cause workers to develop musculoskeletal disorders in the shoulder complex. Exoskeletons may be a solution to reduce the risk for developing musculoskeletal disorders from the work tasks. This study evaluates and compares how the use of three different passive upper body exoskeletons affects the range of motion (ROM) of workers at overhead assembly tasks. An experiment consisting of three tasks was set up in order to analyze the differences between the models. Seventeen subjects were involved in the study. Interviews, observations, videos and motion capture recordings were the methods of collecting data. The results show agreement from all the subjects that the exoskeletons help the worker at this specific assembly operation. The results also show that different exoskeleton models cause different levels of ROM reductions. The subjects’ opinions about how the different exoskeletons influence the ROM corresponds with the analysis of the motion capture data. Positive and negative aspects of each exoskeleton from a ROM and an implementation point of view are discussed. In general, the results indicate that the exoskeleton models can be applicable for the type of work tasks studied. However, the exoskeletons would benefit from further development in order to decrease ROM limitations and therefore cover a larger number of different manual assembly tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call