Abstract

Abstract The directional wave spectrum, which describes the distribution of wave energy along frequencies and directions, can be estimated from the measured motions of a vessel subjected to a particular sea condition by resorting to the wave-buoy analogy. Several methods have been proposed to address the inverse estimation problem; recently, machine learning techniques have been assessed as further alternatives. However, it may be difficult to gather large datasets of in-service motion responses and the associated sea states to train effective data-driven models. In this work, an encoder–decoder neural network is trained with the synthetic responses of a station-keeping platform supply vessel (PSV) to estimate the directional wave spectrum. This estimation model is directly applied to perform wave inference from motion data of wave basin tests with a small-scale model of the same vessel. Furthermore, fine-tuning is also used to incorporate experimental data into the neural network model. Results show a satisfactory match between estimated and measured values, both with respect to the energy distribution and the integral spectrum parameters, indicating that the proposed approach can be employed to obtain data-driven wave inference models when there is little or no availability of measured motion records and the corresponding sea conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.