Abstract
This paper focuses on vehicle detection based on motion features in driving videos. Long-term motion information can assist in driving scenarios since driving is a complicated and dynamic process. The proposed method is a deep learning based model which processes motion frame image. This image merges both spatial (frame) and temporal (motion) information. Hence, the model jointly detects vehicles and their motion from a single image. The trained model on Toyota Motor Europe Motorway Dataset reaches 83% mean average precision (mAP). Our experiments demonstrate that the proposed method has a higher mAP than a tracking-based model. The proposed method runs real-time in driving videos which enables the model to be used in time-critical applications such as autonomous driving and advanced driving assistance systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Turkish Journal of Electrical Engineering and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.