Abstract

This study is concerned with the motion and vibration control strategy for the flexible-link mechanism in order to achieve the high performance and stability. Reducing vibration and making positioning time faster are simultaneously required in this system. Technology of smart structures is introduced in the flexible-link system to achieve the vibration reduction. The smart flexible-link is composed of the flexible-link and the piezoelectric film which has the sensor/actuator function for itself, and so its mechanism is extremely suitable for controlling the vibration. First, a modeling method of the flexible multibody systems is presented based on modal analysis considering the characteristics of the piezoelectric film. In this method, each flexible body modeled by FEM is transformed into the modal space at the 1st stage of the model reduction and then the total system is constructed by synthesizing each modal model and reducing it into the modal space at the 2nd stage reduction. The control system is constructed with the designed dynamic compensator based on the mixed H2/H∞ control problem, resulting in the enhanced performance and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.