Abstract
AbstractA strongly tilted, nearly axisymmetric vortex in dry air with asymmetric diabatic heating is analysed here by matched asymptotic expansions. The vortex is in gradient wind balance, with vortex Rossby numbers of order unity, and embedded in a quasi-geostrophic (QG) background wind with weak vertical shear. With wind speeds of $60{{\ndash}}120~\mathrm{km} ~{\mathrm{h} }^{\ensuremath{-} 1} $, such vortices correspond to tropical storms or nascent hurricanes according to the Saffir–Simpson scale. For asymmetric heating, nonlinear coupling of the evolution equations for the vortex tilt, its core structure, and its influence on the QG background is found. The theory compares well with the established linear theory of precessing quasi-modes of atmospheric vortices, and it corroborates the relationship between vortex tilt and asymmetric potential temperature and vertical velocity patterns as found by Jones (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 821–851) and Frank & Ritchie (Mon. Weath. Rev., vol. 127, 1999, pp. 2044–2061) in simulations of adiabatic tropical cyclones. A relation between the present theory and the local induction approximation for three-dimensional slender vortex filaments is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.