Abstract
In order to reduce the bit rate of video signals, the standardized coding techniques apply motion-compensated prediction in combination with transform coding of the prediction error. By mathematical analysis, it is shown that aliasing components are deteriorating the prediction efficiency. In order to compensate the aliasing, two-dimensional (2-D) and three-dimensional interpolation filters are developed. As a result, motion- and aliasing-compensated prediction with 1/4-pel displacement vector resolution and a separable 2-D Wiener interpolation filter provide a coding gain of up to 2 dB when compared to 1/2-pel displacement vector resolution as it is used in H.263 or MPEG-2. An additional coding gain of 1 dB can be obtained with 1/8-pel displacement vector resolution when compared to 1/4-pel displacement vector resolution. In consequence of the significantly improved coding efficiency, a Wiener interpolation filter and 1/4-pel displacement vector resolution is applied in H.264/AVC and in MPEG-4 (advanced simple profile).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.