Abstract

Boreal lakes typically have high levels of allochthonous dissolved organic matter (DOM), causing light limitation of photosynthetic CO2 consumption while stimulating CO2 production. They are therefore considered as important sources of atmospheric CO2. However, boreal lakes are also experiencing a marked expansion of bloom-forming motile phytoplankton organisms that can circumvent the shading effect of DOM by performing phototaxis and that thus might have an impact on the lakes’ CO2 balance. We tested this idea in a DOM-rich lake using the widespread raphidophyte flagellate Gonyostomum semen as model organism. Employing continuous field measurements, we found that G. semen can reduce the partial pressure of CO2 even at low algal densities. Periods with high algal densities were associated with CO2 undersaturation and invasion of atmospheric CO2. The mean daily net losses of CO2 to the atmosphere during and after a G. semen bloom were estimated at 12.9 and 70.4 mmol C m–2 day–1, respectively. G. semen caused steep pCO2 gradients in space and time, which make it difficult to unveil the species’ impact without employing continuous pCO2 vertical profiling. This suggests that the effect of G. semen on the CO2 balance of boreal lakes might have been overlooked in the past. Taken together, our data suggest that G. semen can significantly reduce the CO2 emissions from boreal lakes despite high concentrations of allochthonous DOM. G. semen and other motile phytoplankton species should therefore be considered when estimating CO2 emissions from boreal lakes, especially if these organisms continue their expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.