Abstract

A brief overview is given of the structure and evolution of gene transcription regulatory networks (GTRNs) of simple organisms like Escherichia coli and yeast Saccharomyces cerevisiae. A prominent motif appearing in the GTRNs is the feed forward loop (FFL). The FFLs have essential functions in gene regulatory processes and it is desirable that the operational noise of a FFL be kept at the minimum for reliability of signal transmission. We calculate the variances around the mean protein levels in the steady states of Type-1 and Type-4 coherent FFLs using a stochastic model of gene expression and the Langevin formalism. The Type-1 FFL is found to be less noisy than the Type-4 FFL. Type-1 FFL motif is more abundant than Type-4 FFL motif in GTRNs. This leads to the conjecture that noise is one of the evolvable traits on which natural selection acts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.