Abstract

The Orthoflavivirus NS3 helicase (NS3h) is crucial in virus replication, representing a potential drug target for pathogenesis. NS3h utilizes nucleotide triphosphate (ATP) for hydrolysis energy to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. Intermediate states along the ATP hydrolysis cycle and conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. Extensive molecular dynamics simulations of West Nile virus NS3h+ssRNA in the apo, ATP, ADP+Piand ADP bound states were used to model the conformational ensembles along this cycle. Energetic and structural clustering analyses depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). Based on these results, MVIL mutants (D471L, D471Nand D471E) were found to have a substantial reduction in ATPase activity and RNA replication compared to the wild-type. Simulations of the mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.