Abstract

For a long time, researchers have compared light traps operating with different light sources. According to the results, ultraviolet lights often performed better than visible light sources. In the present study, we examine the wingspan of macrolepidoptera species in relation to the catch result of visible (visible) and BL traps in choice and no-choice situations using data from the Hungarian light-trap network. We used the catch data of 19 light-trap stations from 1962 to 1963. Up to 18 stations belonged to the national network and the last one was in Nagytétény. We processed data of 381 species of the 18 light-traps data of the national network and data of 222 species from the light traps of Nagytétény. The data of the wingspan of the different macrolepidoptera species we collected from the websites of UKmoths (http://ukmoths.org.uk/index.php), and Guide to the Butterflies and Moths of Hungary (macrolepidoptera) (http://www.macrolepidoptera.hu). We summarised for each light-trap station and each trap type the number of the macrolepidopteran species and individuals caught from different generations. Then, using the Mann–Whitney test, we checked for species the number of individuals captured by visible and BL traps, and the difference of the level of significance. We summarised the wingspan data of all the 381 species, the more efficient light source for each species in a no-choice situation at multiple sites and for the single site of Nagytétény the more efficient light source for species detected there. The BL trap seems most efficient for operation for plant protecting purposes, despite the fact that their use is far more problematic. Insect species are not only endangered by light trapping but also by the light pollution of urban areas. Our results confirm that the different light sources should incur mortality on different species to differing levels. Such differential mortality from artificial light sources could disturb the balance of life in biological communities.

Highlights

  • For a long time, researchers worldwide have compared light traps operating with different light sources

  • We examined the wingspan of macrolepidopteran species in relation to the catch result of visible and black light (BL) traps in choice and no-choice situations using data from the Hungarian light-trap network

  • To compare the differences in the practical use of visible and BL light traps, from 1962, the Hungarian Plant Protection Research Institute at Keszthely experimented with the parallel operation of two light traps, one running on a visible bulb producing mainly visible light and the other outfitted with BL light-emitting mainly ultraviolet light

Read more

Summary

Introduction

Researchers worldwide have compared light traps operating with different light sources. Belton and Kempster [19] verified the results of their laboratory measurements of eye sensitivity by the test of light-trap collecting They caught the highest number of insects with lamps emitting both BL and visible light. According to Gál et al and Bürgés [26–28] for light trapping of Chestnut Weevil (Curculio elephas Gyllenhal) and Acorn Moth (Cydia splendana Hbn.) the most effective light source is the mercury vapour lamp (HgW). Traps with visible or BL lamps achieved comparable catches to each other but less than the mercury source, which produces both ultraviolet and visible light. Moth Species Caught by Ultraviolet and Visible Light Sources in Connection with Their. We examined the wingspan of macrolepidopteran species in relation to the catch result of visible and BL traps in choice and no-choice situations using data from the Hungarian light-trap network

Material
Methods
Results and discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.