Abstract

The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system.

Highlights

  • Orienting towards food and mates in insects is an olfactory-controlled behavior that relies on detecting odorant molecules delivered from the source

  • We study the dynamic coding of naturalistic olfactory stimulation by pheromone-specific antennal neurons

  • (2) Antennal neurons dynamically adjust to the local stimulus statistics

Read more

Summary

Introduction

Orienting towards food and mates in insects is an olfactory-controlled behavior that relies on detecting odorant molecules delivered from the source. Atmospheric turbulence causes strong mixing of air and creates a wide spectrum of spatio-temporal variations in the signal (Fig 1). The largest eddies may be hundreds of meters in extent and take minutes to pass a fixed point, while the smallest spatial variations could have a size of less than a millimeter and last for milliseconds [1,2,3]. Rapid behavioral responses of male moths tracking plumes in turbulent flows [6] and the ability of neurons from the first two layers of the olfactory system to encode the temporal dynamics of pheromone plumes at any distance from the source [7] suggest efficient coding of olfactory plume dynamics

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.